Nouryon CEKOL CMC for Li-ion Battery

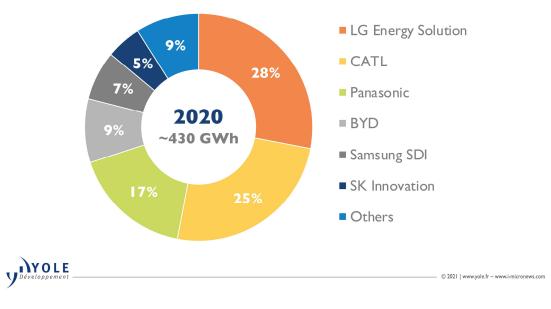
Market Outlook and Technology Overview

Market Outlook

2020 - 2026 total Li-ion battery cell demand in GWh

(Source: Status of the Rechargeable Li-ion Battery Industry 2021 report, Yole Développement, 2021)

- Lithium-ion batteries are employed to electrify transportation, consumer electronic s and stationary energy storage for electrical grids.
- The global Li-ion battery market size is estimated to reach US\$105.6 billion by 2026, with a 23% CAGR 20-26.
- The market for Li-ion battery cells in EV is expected to reach US\$ 86 billion by 2026. The stationary market is expected to be almost US\$ 3.8 billion by 2026, at a 32% CAGR 20-26.


Nouryon

http://www.yole.fr/Status_Of_The_Rechageable_Li_Ion_Battery_Industry_Market_Update_2021.aspx

Market Outlook

2020 top battery manufacturers market shares in GWh

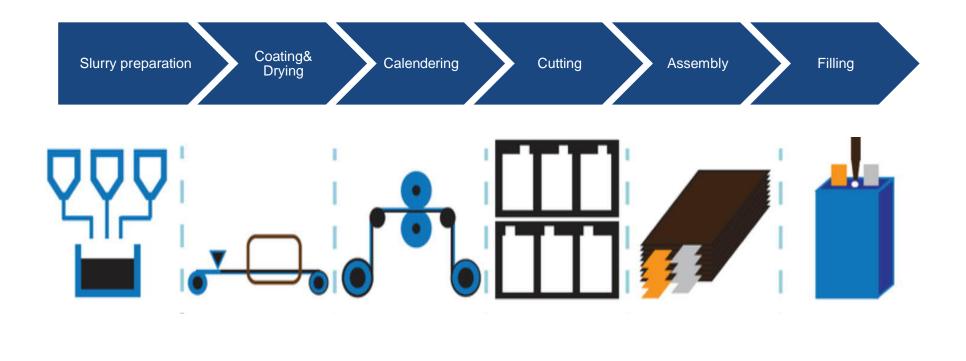
(Source: Status of the Rechargeable Li-ion Battery Industry 2021 report, Yole Développement, 2021)

- In 2020, more than 91% of the battery cell production capacity was distributed among 6 large companies (LGES, CATL, Panasonic, BYD, Samsung SDI, SKI), all of them are Asian companies.
- Other players, including start-up companies like Northvolt, Farasis and SVOLT have also identified a huge business opportunity in supplying battery cells for e-mobility markets, and are increasing their battery production capacity.
- EV makers like Tesla, Volkswagen Group, BMW, General Motors, Ford, etc., are also investing billions of dollars to secure raw materials.

http://www.yole.fr/Status_Of_The_Rechageable_Li_Ion_Battery_Industry_Market_Update_2021.aspx

Technology Overview

Structure


LIB operating principle *

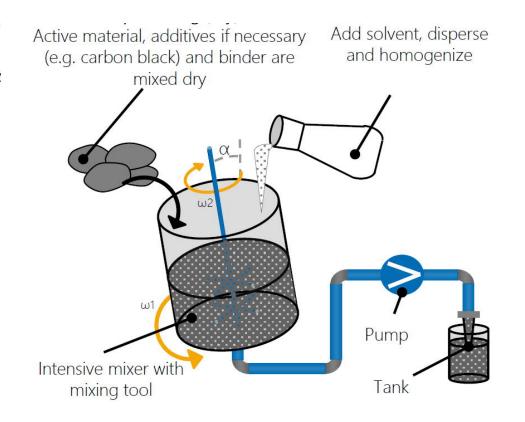
Nouryon

5 Footer

Technology Overview

Process

Technology Overview

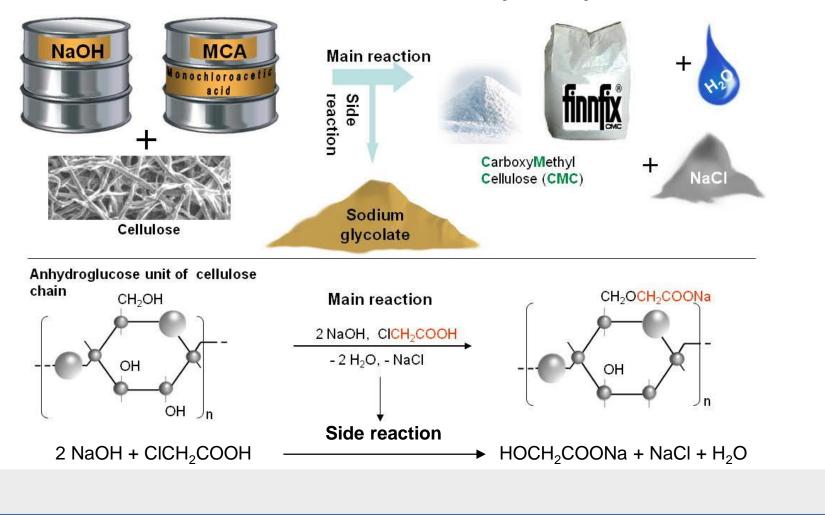

Electrode slurry preparation

Anode formulation*

Active material: Graphite (90 wt.%)) Conductive carbon black: Nano microscopic carbon, e.g. Super P® (5 wt.%) Solvent: Deionized water Binder: CMC (3 wt.%) Additive: SBR (2 wt.%)

Cathode formulation*

Active material: Li(NiMnCo)O2 (90 wt.%) Carbon black: Nano microscopic carbon, e.g. Super P® (5 wt.%) Solvent: N-Methyl-2-Pyrrolidone (NMP) Binder: PVDF (5 wt.%)


CEKOL Carboxymethyl Cellulose

CMC Chemistry

CMC = CarboxyMethyl Cellulose


Product Lines and Trade Names

Purified CMC (Regulated & Consumer applications)

- Min. 99.5% purity (CMC-content)
 - Regular and micro-grinded products
 - Medium to high viscous grades
 - Trade name: CEKOL[®]
- Min. 98% purity (CMC-content)
 - Granulated, regular and micro-grinded products
 - Low to high viscous grades
 - Trade names: finnfix

Technical CMC

- Min. 55-75% purity (CMC-content)
 - Medium to high viscous grades
 - Trade names: finnfix

Tools to Control the Performance

Chemical parameters

- Cellulose source
- Molecular weight
- Degree of substitution
- Substitution pattern
- Molecular modifications/design

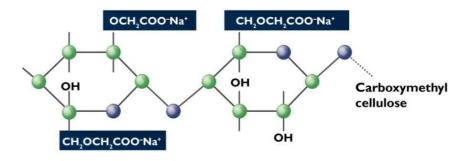
Physical parameters

- Particle size distribution
- Surface modification
- Bulk density

CMC performance

- Rheology
- Water binding capacity
- Stability
- Interaction with other ingredients
- Adhesion
- Dispersibility
- Dissolution speed
- Processing
- Powder flow properties
-

CEKOL CMC for Li-ion Battery


Application	Product	Viscosity (mPas)	Purity	рН	High Clarity (less insolubles)
Anode	CEKOL 30000A	2500 - 3500 (1%, Br LV 3/30)	≥ 99.5%	6.5 - 8.0	
	CEKOL 20000 (P)	1500 – 2500 (1%, Br LV 3/30)	≥ 99.5%	6.5 - 8.0	
	CEKOL CLR 20000S	1000 – 3000 (1%, Br LV 3/30)	≥ 99.5%	6.5 - 8.0	
	CEKOL CLR 80000S	6000 – 10000 (1%, Br LV 4/30)	≥ 99.5%	6.5 - 8.0	\checkmark
Separator	CEKOL 30	25 – 50 (2%, Br LV 1/60)	≥ 99.5%	6.5 - 8.0	
	CEKOL 150	150-300 (2%, Br LV 2/60)	≥ 99.5%	6.5 - 8.0	

(P) : Micro-grinding grade is available.

12 Footer

CEKOL CMC Benefit for Anode

- Bio-based, water-soluble polymer made from renewable cellulosic raw material, harmless to health and environment
- Efficient rheology modifier with customized molecular weight
- Better binding power: Good synergy with SBR, PAA and graphite
- Excellent stability: wide range of pH, high-shear resistance
- Excellent filtration performance: High clarity and less insoluble/Micro-gel in solution

CEKOL® CLR products – New Launch for High Clearity Solution

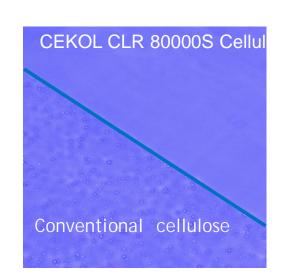
CEKOL® CLR 20000S Cellulose Gum

 a medium viscosity cellulose gum providing good binding power with excellent filterability. (example for battery appl.)

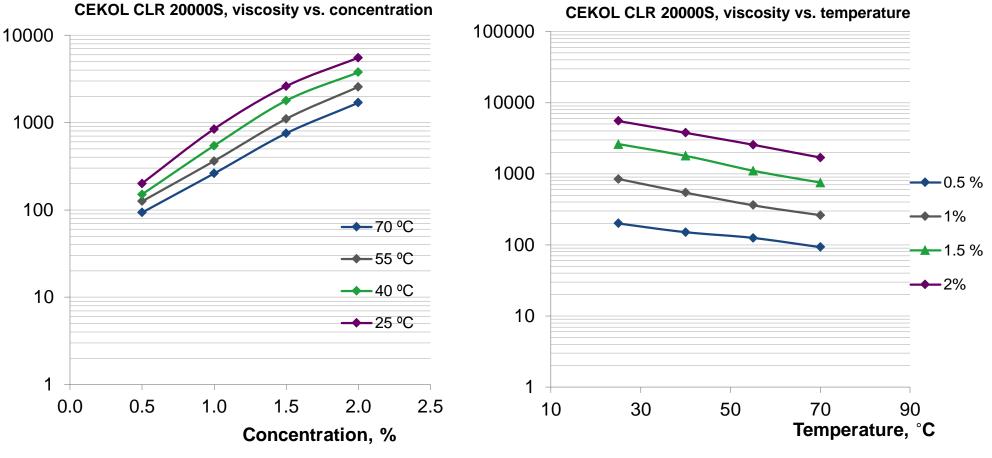
CEKOL® CLR 80000S Cellulose Gum

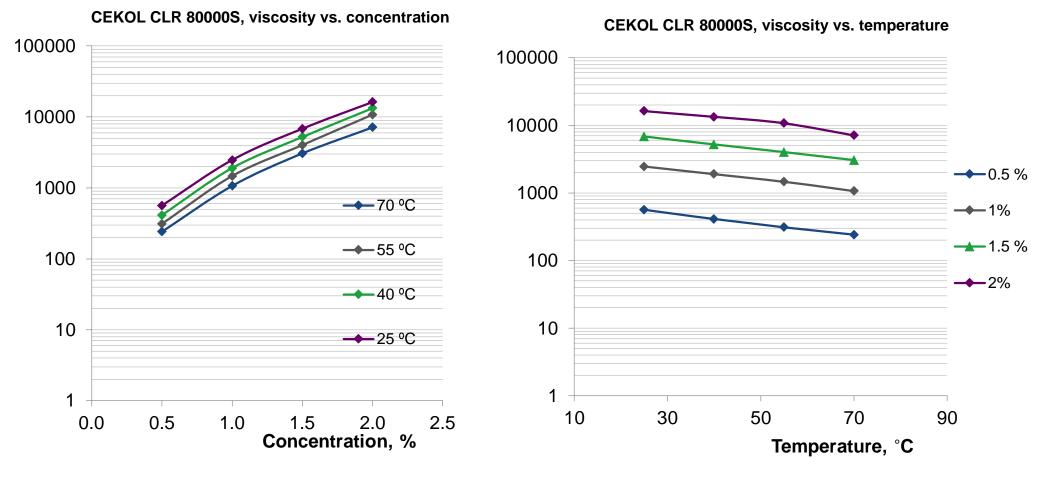
• a high viscosity cellulose gum providing good binding power with excellent filterability. *(example for battery appl.)*

For internal use only


Solution clarity, 1% solution

CEKOL CLR


Conventional


Viscosity Curve - CEKOL CLR 20000S

Measured with a Brookfield RV viscometer at 100 rpm.

16 Footer

Viscosity Curve – CEKOL CLR 80000S

Measured with a Brookfield RV viscometer at 100 rpm.

Thank you

Fo**08**er